skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fecchio, Alan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract HysteromorphaLutz, 1931 is a small but broadly distributed genus of diplostomoidean digeneans parasitic as adults primarily in cormorants, but also reported from some other fish-eating birds. Their metacercariae were found in a variety of freshwater fishes as second intermediate hosts. Prior to this study, the genus included only 3 nominal species, 2 of them distributed in the Old World and 1 in the New World. We obtained sequences of partial mitochondrialcox1 gene and nuclear rDNA operon from new specimens collected in Europe, North and South America and used them for species comparisons and phylogenetic analysis. We also examined morphology of our newly collected specimens as well as museum specimens. Our analysis has demonstrated that at least 2 (likely 3) species ofHysteromorphaare distributed in the Americas.Hysteromorphasp. previously sequenced from larval stages, clearly represents a new species named hereinHysteromorpha ostrowskiaen. sp.Achatz, Locke et Tkach. Morphology of adults of the new species was earlier described in sufficient detail under the nameHysteromorpha triloba(Rudolphi, 1819). Our analyses also suggest the presence of another unknownHysteromorphasp. in North America represented bycox1 sequence from southeastern Canada (GenBank JF769473), but no morphological vouchers are available for this species. 
    more » « less
  2. Abstract Fibricola and Neodiplostomum are diplostomid genera with very similar morphology that are currently separated based on their definitive hosts. Fibricola spp. are normally found in mammals, while Neodiplostomum spp. typically parasitize birds. Previously, no DNA sequence data was available for any member of Fibricola . We generated nuclear ribosomal and mtDNA sequences of Fibricola cratera (type-species), Fibricola lucidum and 6 species of Neodiplostomum . DNA sequences were used to examine phylogenetic interrelationships among Fibricola and Neodiplostomum and re-evaluate their systematics. Molecular phylogenies and morphological study suggest that Fibricola should be considered a junior synonym of Neodiplostomum . Therefore, we synonymize the two genera and transfer all members of Fibricola into Neodiplostomum . Specimens morphologically identified as Neodiplostomum cratera belonged to 3 distinct phylogenetic clades based on mitochondrial data. One of those clades also included sequences of specimens identified morphologically as Neodiplostomum lucidum . Further study is necessary to resolve the situation regarding the morphology of N. cratera . Our results demonstrated that some DNA sequences of N. americanum available in GenBank originate from misidentified Neodiplostomum banghami . Molecular phylogentic data revealed at least 2 independent host-switching events between avian and mammalian hosts in the evolutionary history of Neodiplostomum ; however, the directionality of these host-switching events remains unclear. 
    more » « less
  3. Abstract AimMacroecological analyses provide valuable insights into factors that influence how parasites are distributed across space and among hosts. Amid large uncertainties that arise when generalizing from local and regional findings, hierarchical approaches applied to global datasets are required to determine whether drivers of parasite infection patterns vary across scales. We assessed global patterns of haemosporidian infections across a broad diversity of avian host clades and zoogeographical realms to depict hotspots of prevalence and to identify possible underlying drivers. LocationGlobal. Time period1994–2019. Major taxa studiedAvian haemosporidian parasites (generaPlasmodium,Haemoproteus,LeucocytozoonandParahaemoproteus). MethodsWe amalgamated infection data from 53,669 individual birds representing 2,445 species world‐wide. Spatio‐phylogenetic hierarchical Bayesian models were built to disentangle potential landscape, climatic and biotic drivers of infection probability while accounting for spatial context and avian host phylogenetic relationships. ResultsIdiosyncratic responses of the three most common haemosporidian genera to climate, habitat, host relatedness and host ecological traits indicated marked variation in host infection rates from local to global scales. Notably, host ecological drivers, such as migration distance forPlasmodiumandParahaemoproteus, exhibited predominantly varying or even opposite effects on infection rates across regions, whereas climatic effects on infection rates were more consistent across realms. Moreover, infections in some low‐prevalence realms were disproportionately concentrated in a few local hotspots, suggesting that regional‐scale variation in habitat and microclimate might influence transmission, in addition to global drivers. Main conclusionsOur hierarchical global analysis supports regional‐scale findings showing the synergistic effects of landscape, climate and host ecological traits on parasite transmission for a cosmopolitan and diverse group of avian parasites. Our results underscore the need to account for such interactions, in addition to possible variation in drivers across regions, to produce the robust inference required to predict changes in infection risk under future scenarios. 
    more » « less